python3 tensorflow偏微分方程例子 发表于 2018-02-20 | 12345678#导入模拟仿真需要的库import tensorflow as tfimport numpy as np#导入可视化需要的库import PIL.Imagefrom IPython.display import clear_output, Image, displayfrom io import StringIO,BytesIO 1234567def DisplayArray(a, fmt='jpeg', rng=[0,1]): """Display an array as a picture.""" a = (a - rng[0])/float(rng[1] - rng[0])*255 a = np.uint8(np.clip(a, 0, 255)) f = BytesIO() PIL.Image.fromarray(a).save(f, fmt) display(Image(data=f.getvalue())) 123456789101112131415161718def make_kernel(a): """Transform a 2D array into a convolution kernel""" a = np.asarray(a) a = a.reshape(list(a.shape) + [1,1]) return tf.constant(a, dtype=1)def simple_conv(x, k): """A simplified 2D convolution operation""" x = tf.expand_dims(tf.expand_dims(x, 0), -1) y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME') return y[0, :, :, 0]def laplace(x): """Compute the 2D laplacian of an array""" laplace_k = make_kernel([[0.5, 1.0, 0.5], [1.0, -6., 1.0], [0.5, 1.0, 0.5]]) return simple_conv(x, laplace_k) 1sess = tf.Session() 12345678910111213N = 500# Initial Conditions -- some rain drops hit a pond# Set everything to zerou_init = np.zeros([N, N], dtype="float32")ut_init = np.zeros([N, N], dtype="float32")# Some rain drops hit a pond at random pointsfor n in range(40): a,b = np.random.randint(0, N, 2) u_init[a,b] = np.random.uniform()DisplayArray(u_init, rng=[-0.1, 0.1]) 池塘 123456789101112131415161718# Parameters:# eps -- time resolution# damping -- wave dampingeps = tf.placeholder(tf.float32, shape=())damping = tf.placeholder(tf.float32, shape=())# Create variables for simulation stateU = tf.Variable(u_init)Ut = tf.Variable(ut_init)# Discretized PDE update rulesU_ = U + eps * UtUt_ = Ut + eps * (laplace(U) - damping * Ut)# Operation to update the statestep = tf.group( U.assign(U_), Ut.assign(Ut_)) 123456789101112# Initialize state to initial conditionsinit = tf.global_variables_initializer()sess.run(init)# Run 1000 steps of PDEfor i in range(1000): # Step simulation sess.run(step,{eps: 0.03, damping: 0.04}) # Visualize every 50 steps if i % 50 == 0: clear_output() DisplayArray(sess.run(U), rng=[-0.1, 0.1]) 仿真